
COVERITY SCAN: 2013 OPEN SOURCE REPORT

Coverity Scan:
2013 Open Source Report

COVERITY SCAN: 2013 OPEN SOURCE REPORT

Coverity Scan: A Brief Introduction 2

Open Source is Eating the World 3

The State of Open Source Software Quality: C/C++ 6

Linux: Through the Years 12

Key Differences: Java and C/C++ 17

Java Project Snapshots 19

 Apache Cassandra 19

 Apache CloudStack 20

 Apache Hadoop 21

 Apache HBase 22

Conclusion and Next Steps 23

About Coverity 23

COVERITY SCAN: 2013 OPEN SOURCE REPORT

3

 “Coverity Scan helped us identify multiple potential buffer overrun
vulnerabilities, due to integer overflow in size calculations.”

- PostgreSQL -

“The open source tools are good, and improving, but Coverity currently
provides a superior experience.”

- Vincent Sanders (Netsurf Browser contributor) -

“If you contribute to an open source project, you should be using
Coverity Scan. It will likely find bugs that can certainly have security

implications in your code.”
- fwknop -

“The reports from Coverity are a valuable contribution to - among
others - the LibreOffice development process.”

- LibreOffice -

“Coverity remains the single most useful tool I've used.”
- Ward Fisher (NetCDF contributor) -

1

COVERITY SCAN: 2013 OPEN SOURCE REPORT

2

Coverity Scan: A Brief Introduction
The Coverity Scan™ service began as a public-private sector research project, focused on open source software quality and
security. Initiated in 2006 with the U.S. Department of Homeland Security, Coverity now manages the project, providing our
development testing technology as a free service to the open source community to help them build quality and security into
their software development process. The Coverity Scan service enables open source developers to scan–or test–their Java, C
and C++ code as it is written, flag critical quality and security defects that are difficult (if not impossible) to identify with other
methods and manual reviews, and provide developers with actionable information to help them to quickly and efficiently fix
the identified defects.

In 2013, the Coverity Scan service experienced explosive growth and now has more than 1,500 projects.

Table 1: Total number of projects in Coverity Scan service through March 2014

This growth reaffirms the power and importance of development testing, and static analysis as a foundational technology, for
open source projects to assure the quality and security of their code.

In May of 2013, we expanded the service to include support for Java. Since that time, more than 100 open source projects
have joined the service including popular Big Data projects such as Apache Hadoop, Apache HBase and Apache Cassandra,
and other widely adopted Java projects such as Apache CloudStack, as well as Hudson Server, Eclipse Code Recommender
and many others. In less than one year, our new Java members fixed thousands of defects. Coverity also joined the Eclipse
Foundation and created a Coverity Scan Hudson plugin that integrates with projects hosted by the Eclipse Foundation,
making it easier for these projects to build development testing into their development workflow.

COVERITY SCAN: 2013 OPEN SOURCE REPORT

3

Open Source Software is Eating the World
If software is eating the world, as posited by Marc Andreessen, then open source software is leading the charge. According to
a recent study by Black Duck Software and North Bridge Venture Partners, the adoption and support of open source software
in the enterprise has never been higher. Eight out of ten people surveyed are choosing open source software based on quality.
Open source software has become a key component in the enterprise software supply chain and is critical to the success of
many organizations. As evidence of this, in September of 2013, IBM announced plans to invest USD $1 billion in Linux and
open source technologies for their Power Systems servers.

Coverity Scan: Open to a New Audience

The Coverity Scan service has been impacted by this phenomenon as well. In the past year, we’ve seen an exponential increase
in the number of people who have asked to join particular projects simply to monitor the defects being found and fixed. In
many cases, these people work for large enterprises that utilize open source software within their commercial solutions, and
thus have a deep interest in understanding and monitoring the quality of these projects. Up until now, Project Administrators
were required to approve any new member who wanted to contribute or simply monitor a project. Based on the overwhelming
number of requests received, as well as the positive feedback from Scan Project Administrators, we are now enabling
individuals to become Project Observers. This means they can track the state of their favorite open source projects in the Scan
service and view high-level data including the count of outstanding defects, fixed defects and defect density.

We believe allowing individuals to view this type of information about specific projects will help them to make informed
decisions, based on some key measures of code quality, about which projects they should include in their software supply chain.
Black Duck Software, a Coverity Certified Partner, provides complementary capabilities to help assess the quality and stability
of open source projects.

 A Healthy Community Matters
By Black Duck Software
 Having an active, vibrant community behind an open source software (OSS) project is a critical factor
in determining that project’s overall health. While assessing defect density data provides an important
perspective, assessing its community health helps further determine if issues will be resolved quickly and if
future feature investment is likely to occur.

 Healthy projects have multiple active contributors who make frequent commits, and most of the highest
quality projects have a diverse contributor base, offering multiple perspectives and use cases. Tracking and
assessing these community characteristics requires insight into a project’s commit and contributor activity and
history. You can find this data on sites like Ohloh.net and GitHub.

 Newer, growing projects often exhibit different community characteristics versus older, more mature projects.
For new projects, community health can often be assessed by the number of net-new contributors and
the frequency and amount of code contributions made. As projects mature, the focus often shifts to larger
numbers of people contributing to bug fixes, documentation updates, integration elements and other adjacent
contributions.

COVERITY SCAN: 2013 OPEN SOURCE REPORT

4

Whether project is big or small, new or old, its commit details, activity levels and contributor details provide valuable insight
into a project’s community health. Our mission with the Coverity Scan service is to help further the rapid adoption of open
source software by providing open source projects with the ability to build code quality and security into the development
process in the same way as commercial projects. Based on the millions of lines of open source software we have scanned
over the past eight years, we have become an authority on the state of open source software quality. Our aim is to provide
an objective industry standard that developers can use to evaluate open source software quality and ultimately increase the
adoption of open source code.

Enhancements

In addition to introducing this new level of visibility, we made numerous enhancements to our Scan service to improve
ease of use and enable more developers to be able to get started and begin viewing defects with just a few clicks of a button.
We recently developed integrations with GitHub and Travis CI so that developers can leverage our combined cloud-based
platforms to write their code, build their applications and find and fix high-impact defects before releasing their software.
More than 40 percent of the projects using the Scan service currently have repositories on GitHub and this new, single sign-on
capability will make it even easier for their contributors to view and address high-impact defects in their code.

We also upgraded our static analysis engine to take advantage of the new and tuned algorithms for Java, C and C++, and made
improvements to our build process to make it easier for administrators to run the analysis on their own.

Project and Developer Adoption

The total number of developers using the Coverity Scan service has now grown to almost 3,500 users as of March 2014.
However, this still doesn’t capture the full impact of the Scan service as it only represents the number of people who access our
system to capture defect information. It does not capture all of the individual developers who are working to fix the defects we
have identified. Many projects have assigned quality specific roles and it is this group of individuals who typically access our
service. They review all of the new defects and then publish the results to a much broader set of developers, so they can in turn
collaborate on resolving the identified defects. Some projects, such as Python, have created an email alias where they share all
newly detected defects, others publish the results on their project page under a separate Coverity Scan service section, while
many others simply forward the list of defects to an internal email list.

 Saving Time and Resources
 One very large project in the Scan service, unfortunately, did not have a policy to review all new defects. If
it had, in February of 2013, it would have been able to address a high-impact defect that could have led to
a denial of service or allowed the program to execute arbitrary via a crafted ImageText request that triggers
memory-allocation failure. Instead, the project discovered and addressed the issue in October of 2013, which
surely involved far more resources and left the project users vulnerable to the defect for eight months.

COVERITY SCAN: 2013 OPEN SOURCE REPORT

5

We’ve seen an important trend with our open source projects that has been mirrored by our commercial customers. Coverity
has long recommended a “no new defects” policy as a best practice for driving adoption of development testing. For many,
the vast quantities of defects that are discovered the first time the Coverity analysis is run can be overwhelming. When faced
with thousands of defects, it’s difficult to know where to start. By putting in place a “no new defects policy,” it is far easier to
address new defects because the source code is still fresh in the mind of the developer and therefore will take less time to fix.
In addition to ensuring no new defects are introduced, teams then also implement a plan for working on the backlog of issues,
starting with the high-impact and most critical defects.

Table 2: All Defects Fixed From 2008-2013

Almost 50,000 defects were fixed in 2013 alone – more than the amount of defects that had been fixed in the history of the
service.

COVERITY SCAN: 2013 OPEN SOURCE REPORT

6

The State of Open Source Software Quality: C/C++
In 2013, we analyzed more than 250 million lines of code from more than 740 of our most active C and C++ projects, which
represented a mix of long-time and newer members of the service. The projects range in size from fewer than 5,000 lines
of code to more than 16 million lines of code (for NetBSD). The next three largest projects in the service are FreeBSD,
LibreOffice and Linux, with 12, 9 and 8.5 million lines of code respectively. Due to the magnitude of the increase in the
number of projects analyzed for this report compared to the 118 that were included last year, we saw some shifts in the
distribution of project sizes. We continued to see large numbers of mid- to smaller-sized projects join the program and adopt
static analysis as a software development best practice.

TABLE 3: 2013 PROJECT DISTRIBUTION BY CODEBASE SIZE – C/C++

Size of Codebase (Lines of Code)
Number of

Projects 2013
% of Total

Projects 2013
% of Total

Projects 2012

Less than 100,000 358 48% 38%

100,000-499,999 299 40% 44%

500,000-1 million 42 6% 7%

More than 1 million 42 6% 11%

Total 741

A Note on False Positive Rates

The leading barrier to adoption of static analysis technology has historically been the accuracy of analysis. Developers will not
use a solution if it produces large volumes of false positive results–there is simply too high a signal to noise ratio. Therefore,
the accuracy of our analysis is of critical importance to us. With every release, we tune our analysis results to further improve
the breadth and depth of our defect detection. We use the more than 250 million lines of open source code and 5 billion lines
of proprietary code we’ve analyzed to help us continually improve our analysis algorithms. Our false positive rates have been
declining over the years. In the 2008 report, we noted the average false positive rate across all open source projects was 13.2%;
in the 2009 report, that number dropped to 9.8% and in 2012, the rate dropped again to 9.7%. In 2013, we saw the false
positive rate take a slight uptick to 10.2%. We believe this increase is a result of the large number of new analysis algorithms
that will be tuned over time with large volumes of use, as well as the large influx of new projects which joined the Scan service.
In the early stages of participation in the service, many projects haven’t yet created the models which enable our analysis engine
to better understand the specific idioms of individual projects. Despite the slight increase, our false positive rate continues to be
far below that of most commercial and open source static analysis solutions available today.

COVERITY SCAN: 2013 OPEN SOURCE REPORT

7

TABLE 4: AVERAGE DEFECT DENSITY ACROSS ALL ACTIVE SCAN C/C++ PROJECTS 2008-2013

Coverity Scan Report Year Average Defect Density C/C++

2008 .30

2009 .25

2010 .81

2011 .45

2012 .69

2013 .59

We witnessed defect density for open source projects in C and C++ drop this year, despite the influx of new projects. We have
historically seen that codebases with a defect density of 1.0, or 1 defect per every 1,000 lines of code, are considered good
quality software. Last year, we stated that based on our historical data, open source software (for projects which have adopted
development testing via the Coverity Scan service) not only has better than average quality as compared to the industry
average, but in fact continues to raise the bar on what is considered good quality software for the entire industry. That trend
continues as the defect density of the open source projects participating in the Scan service dropped to .59 in 2013.

TABLE 5: 2013 DEFECT DENSITY BY PROJECT SIZE – C/C++

Size of Codebase (Lines of Code) Defect Density 2013 Defect Density 2012

Less than 100,000 .35 .40

100,000-499,999 .50 .60

500,000-1 million .70 .44

More than 1 million .65 .75

Average Across Projects .59 .69

Commentary on Defect Density:
In 2013, the overall defect density for C and C++ projects was lower than in 2012 for all but one level. We had five times more projects
with 500,000-1 million lines of code. With new projects, it is not uncommon to see higher defect density rates than in projects that
have been using static analysis through the Scan service for several years, and have matured their usage such that static analysis is used
regularly as part of their standard process.

COVERITY SCAN: 2013 OPEN SOURCE REPORT

8

Open Source Code Quality Surpasses Proprietary Code Quality In C/C++ Projects

In 2013, for the first time, we saw open source quality for the projects in the Scan service surpass that of proprietary projects
at all code base sizes. The 2012 Coverity Scan Report looked at a sample analysis of more than 250 proprietary code bases
totaling more than 380 million lines of code, with an average codebase of nearly 1.5 million lines of code, and we found that
open source code had lower defect density levels up to 1 million lines of code. For the 2013 report, we analyzed approximately
500 million lines of code across almost 500 proprietary C/C++ projects.

TABLE 6: 2013 COMPARISON OF OPEN SOURCE AND PROPRIETARY C/C++ CODE

Size of Codebase (Lines of Code) Open Source Code Proprietary Code

Lines of Code 252,010,313 684,318,640

Number of Projects 741 493

Average Project Size (lines of code) 340,094 1,388,070

Defects Outstanding as of 12/31/13 149,597 492,578

Defects Fixed in 2013 44,641 783,799

Defect Density .59 .72

In 2013, the defect density rate of open source code was lower than that of proprietary code. According to recent reports
sponsored by Black Duck Software and North Bridge Venture Partners, quality concerns are no longer a barrier to open source
adoption in the enterprise. In fact, the quality of the open source code for Coverity Scan participants can be higher than the
proprietary code included in an enterprise product.

 Defect density in this report is measured by the number of defects per 1,000 lines of code
identified by the Coverity Development Testing Platform. It does not include defects found
through other testing methods or post-deployment use. Defect density is computed using
only defects in the “high-impact” or “medium-impact” categories for C/C++ projects and is
a measure of confirmed and potential defects that are left in the codebase at the time of this
report.

COVERITY SCAN: 2013 OPEN SOURCE REPORT

9

TABLE 7: 2013 DEFECT DENSITY BY PROJECT SIZE OPEN SOURCE VS. PROPRIETARY C/C++ CODE

Size of Codebase (Lines of Code) Open Source Proprietary Code

Less than 100,000 .35 .38

100,000-499,999 .50 .81

500,000-1 million .70 .84

More than 1 million .65 .71

Average across projects .59 .72

In 2013, we saw the quality of open source code surpass that of proprietary code at every level. We did not see the same cliff
in terms of quality for projects with more than one million lines of code. One of the key factors leading to this change was the
overall dedication to quality by our largest projects. NetBSD, FreeBSD, LibreOffice and Linux collectively fixed more than
11,000 defects in their code in 2013.

Most Commonly Fixed Defects by Type

The top defects fixed in C and C++ projects continued to hold steady with resource leaks, null pointers and control flow issues
being the three most commonly fixed issues. However the rank order and sheer volume of such issues changed dramatically
from 2012. More than three times the number of resource leaks were fixed compared to 2012. Overall, more than double the
amount of defects were fixed in C and C++ code in comparison to 2012. For those not familiar with defect types and their
potential impact:

• Resource leaks often involve failure to release resources when the initial allocation succeeds, but a subsequent,
additional resource is not available. This type of defect can impact system reliability and stability, or cause
a program crash, due to the behavior of the code that fails when resources cannot be allocated. These
malfunctions are often very difficult to reproduce in a non-production environment.

• Null pointer dereferences often occur when one code path initializes a pointer before its use, and another code
path bypasses the initialization process. These defects are relatively easy to fix when they are found, however,
they are often missed in code reviews because they may occur only on certain code paths. If these paths are
never exercised during testing, these defects can be the cause of crashes in the user’s environment that are not
easily replicated and thus not easily remedied.

• Control flow issues include defects in which the program contains code that either never executes, such
as dead code, or executes under the wrong conditions and could lead to unexpected behavior or security
vulnerabilities.

COVERITY SCAN: 2013 OPEN SOURCE REPORT

10

37% of all C and C++ defects fixed in 2013 were classified as high-impact defects, up slightly from 36% in 2012. The top three
types of issues fixed in 2013 were consistent with the 2012 Coverity Scan report.

TABLE 8: DEFECTS FIXED BY TYPE AND IMPACT IN C/C++ CODE IN 2013

Category Quantity 2013 Quantity 2012 Impact

Resource leaks 9,503 2,544 High

Null pointer dereferences 6,573 2,724 Medium

Control flow issues 5,175 3,464 Medium

Error handling issues 4,500 1,432 Medium

Uninitialized members 3,398 918 Medium

Memory - illegal accesses 2,591 1,693 High

Memory - corruptions 2,555 2,264 High

Integer handling issues 2,448 2,512 Medium

Uninitialized variables 1,997 1,374 High

Incorrect expression 1,912 766 Medium

Code maintainability issues 982 476 Low

Security best practices violations 759 254 Low

Insecure data handling 705 751 Medium

API usage errors 619 257 Medium

Program hangs 324 127 Medium

Concurrent data access violations 164 175 Medium

Performance inefficiencies 153 49 Low

Parse warnings 260 188 Low

Class hierarchy inconsistencies 17 4 Medium

Total 44,641 21,972

Defects Outstanding

The number of defects outstanding increased dramatically to more than 156,000, up from 21,972 at the end of 2012. This
increase is a reflection of the large number of new projects which joined the service in 2013, and the dramatic increase in
lines of code analyzed. The top outstanding defects in 2013 were fairly consistent with 2012. The only difference was more

COVERITY SCAN: 2013 OPEN SOURCE REPORT

11

uninitialized member defects were left outstanding in 2013 versus 2012. Control flow issues dropped to the third position for
highest type of outstanding issue.

TABLE 9: DEFECTS OUTSTANDING BY TYPE AND IMPACT AS OF DEC. 31, 2013 IN C/C++ CODE

Category Quantity Impact

Null pointer dereferences 19,574 Medium

Uninitialized members 13,967 Medium

Control flow issues 12,015 Medium

Error handling issues 12,679 Medium

Resource leaks 11,318 High

Integer handling issues 5,329 Medium

Memory - illegal accesses 4,957 High

Memory – corruptions 4,434 High

Uninitialized variables 4,299 High

Security best practices violations 3,750 Low

Insecure data handling 3,611 Medium

Incorrect expression 3,165 Medium

Code maintainability issues 2,818 Low

API usage errors 2,665 Medium

Performance inefficiencies 723 Low

Program hangs 688 Medium

Concurrent data access violations 611 Medium

Parse warnings 454 Low

Class hierarchy inconsistencies 69 Medium

Total 107,126

COVERITY SCAN: 2013 OPEN SOURCE REPORT

12

Linux: Through the Years
Coverity and Linux have had a long standing partnership on code quality which started in the early 2000’s when Coverity was
still a research project in the Computer Science Laboratory at Stanford University. Since that time, both Coverity and Linux
have experienced tremendous growth. One thing that has remained constant for both parties is our commitment to quality.

TABLE 10: LINUX ANALYSIS 2006-2013

Year Version(s)
Lines of Code

Analyzed
New Defects

Identified
Defects Fixed

2006 2.6.16 3,451,730 1,264 435

2007 2.6.16 3,458,369 425 217

2008 2.6.27 4,202,209 596 365

2009 2.6.32 4,862,567 527 417

2010 2.6.33, 2.6.34, 2.6.35 5,504,780 3,858 462

2011 2.6.38, 2.6.39, 3.0, 3.1 6,849,378 2,331 1,283

2012 3.2, 3.3, 3.4, 3.5, 3.6., 3.7 7,387,908 5,803 5,170

2013 3.12 8,578,254 3,299 3,346

TABLE 11: LINUX DEFECTS FOUND AND FIXED BY TYPE AND IMPACT IN 2013

Category Outstanding Fixed Impact

Control flow issues 1,071 301 Medium

Integer handling issues 626 816 Medium

Null pointer dereferences 543 291 Medium

Memory - illegal accesses 509 373 High

Error handling issues 449 220 Medium

Incorrect expression 378 92 Medium

Insecure data handling 351 56 Medium

Memory – corruptions 316 762 High

COVERITY SCAN: 2013 OPEN SOURCE REPORT

13

Uninitialized variables 296 207 High

Code maintainability issues 237 57 Low

Resource leaks 158 128 High

Security best practices violations 102 25 Low

Program hangs 21 3 Medium

API usage errors 18 11 Medium

Concurrent data access violations 12 3 Medium

Performance inefficiencies 0 1 Low

Grand Total 5,092 3,346 Defect Density: 0.61

To help ensure highly accurate static analysis results in the Scan service, the Linux team leverages Coverity's modeling
capabilities to help the analysis algorithms better understand the patterns and behavior of the Linux code. The analysis
automatically builds models based on the source code, but it can’t always correctly infer what happens–perhaps there is no
source code, like in the case of a dynamic library, or there are external effects that cannot be predicted, such as a remote
procedure call.

When Dave Jones, Coverity Scan Administrator for Linux, first became involved in the Coverity Scan service in August of
2013, he established many new, smaller components for Linux to simplify management. Table 12 shows the defect density for
the ten largest components. The Linux kernel continues to improve in quality each year. In 2011, it had a defect density of .95,
which dropped to .76 in 2012 and is now .61. This change is testament to the team’s commitment to quality.

TABLE 12: LINUX DEFECT DENSITY BY COMPONENT 2013

Component Linux 2013

Drivers 0.58

Drivers-Media 0.47

Drivers-SCSI 0.67

Staging-lustre 0.85

Drivers-Staging 0.77

Networking 0.50

Drivers-USB 0.49

COVERITY SCAN: 2013 OPEN SOURCE REPORT

14

Kernel 0.61

Drivers-Infiniband 0.65

Drivers-USB 0.49

Kernel 0.61

Drivers-Infiniband 0.65

One of the other key changes implemented by Dave was the focus on rapidly eliminating newly detected defects. He believes
that newly detected defects are easier to resolve because the code is still fresh in the mind of the developer and legacy defects
can often take care of themselves over time, as the code is rewritten and the defect is eliminated. The following chart shows the
impact of this focus on new defects:

Table 13: Number of Days to Fix Newly Detected Defects

In addition to focusing on new defects, Dave also ensured that critical legacy defects were steadily addressed. The following
chart shows the overall number of defects that were fixed in 2013. The chart shows a spike in the number of defects fixed
that occurred when Dave commenced his role as the project administrator within Coverity Scan. The dip in December is a
reflection of a temporary lull in activity due to the holiday season.

0
20
40
60
80

100
120
140

Ja
n.

Fe
b.

M
ar

ch
Ap

ril
M

ay
Ju

ne Ju
ly

Au
g.

Se
pt

.
O

ct
.

N
ov

.
De

c.

Number of Days to Fix Newly
Detected Defects

Number of Days to Fix
Newly Detected
Defects

COVERITY SCAN: 2013 OPEN SOURCE REPORT

15

Table 14: Total Number of Defects Fixed

An Interview with Dave Jones: Coverity Scan Administrator for Linux and Blogger

Q: What has your overall experience with the Coverity Scan service been like?
A: Over time, the defect rate is decreasing. For every point release of Linux the defect rate drops by around 200 or so

bugs. In the beginning, it was about 5.4k issues, then down to 5.2, now down to 5k.

 Overall there is an increased interest in the bugs that are being found through the Coverity Scan service. We have
more people looking at the bugs and taking them more seriously.

Q: As you know, we recently added an observer role to the Scan service. How do you see this benefitting your project?
A: Just having exposure to the project is useful because it does increase participation.

 We would like to see observers have access to old bugs in the system as it is useful to have newcomers to a project
exposed to actual bugs, especially some of the older bugs that perhaps haven't been getting attention because the
original developers have moved on to other code.

 For many new developers, they have not dealt with a body of code of this size and complexity, and some of the
bugs scan finds are not always obvious. Even to seasoned developers, sometimes it can take a lot of thought to
figure out if the bug can actually occur.

0
100
200
300
400
500
600
700
800
900

1000

Total Number of Defects Fixed

Total Number of
Defects Fixed

http://codemonkey.org.uk/

COVERITY SCAN: 2013 OPEN SOURCE REPORT

16

Q: As a long-time participant in the Scan service, what have been the greatest benefits the Linux project has received?
A: When I first signed up for Scan last July, I was horrified by the more than 5,000 defects I saw. However,

implementing daily scans has been really useful. We're now seeing some bugs fixed within 24 hours of being
introduced, which means those bugs aren't ending up in a release and users are never seeing them.

Q: How has your use of the service evolved?
A: In the past, we had about 12 members of the project who had access to the Scan database. They would log in every

once in a while and be a bit overwhelmed by the number of defects. There was awareness of the Coverity Scan
service but not lots of momentum. Our goal behind moving to regular builds was to generate more interest and
drive adoption. People are more interested and inclined to fix fresh issues while the code changes are still in their
short term memory than they are to look into issues from several years earlier.

The only realistic way to approach the bug fix is to try and keep up with the new issues as they are detected, while
slowly chipping away at the existing backlog of older issues. Often times with old bugs, we don't fix them directly.
The code often gets rewritten for unrelated reasons, thus eliminating the defect. In the Linux project, some code
has a very high turnover rate.

Q: Are quality and security of equal importance?
A: A security problem is something people take seriously but at the same time quality can be very important. I would

say most kernel developers treat quality and security on equal footing. We take the same approach with both as it's
often too much work to try to separate the two we just try to focus on fixing the critical bugs. We do treat some of
the checkers within Coverity with higher importance.

Q: Do you have roles in place to ensure that high-quality and secure code is being produced?
A: The rate of change in Linux is extremely high. [see https://www.linuxfoundation.org/sites/main/files/publications/

whowriteslinux.pdf] One of the largest problems Linux faces is getting enough code review. We have considerably
more people writing new code than reviewing code, which is one reason tools like Scan are so useful. The Linux
development process involves code being passed through multiple trees before it eventually finds its way into Linus
Torvalds tree. At each step of the way, numerous people are performing testing on that new code, so by the time it
gets merged it usually is in far better shape than it was when it was first submitted.

Q: What happens if a contributor creates code that does not meet your standards for quality or security?
A: Ideally, such code should never make it to the stage where it gets into Linus' tree, but it does happen on occasion,

when there are insufficient people reviewing new code.

COVERITY SCAN: 2013 OPEN SOURCE REPORT

17

Key Differences: Java and C/C++
In the Coverity Scan service, we are still in the early days of working with Java projects. The service has been open to these
projects for less than one year but we’ve already observed some key differences between Java and C/C++ projects. For C and
C++ projects, the developers fixed 46% of all of the resource leaks that were identified. However, for Java projects, only 13% of
the resource leaks were fixed. This begs the question as to whether or not Java developers have become overly reliant on some
of the built-in protections in the language, such as the garbage collection, which is supposed to protect against memory leaks
by returning memory to the memory pool by destroying objects that no longer have a reference to them. Garbage collection
can be unpredictable and lead to resource starvation and program crashes. Plus, garbage collection cannot address system
resources such as files and sockets so developers should be mindful of this type of issue. We expect to see that as Java projects
become more mature in their use of the Coverity Scan service, they will begin to address more of the resource leaks in their
projects.

Overall defect density in Java projects was 2.72, which is significantly higher than the .59 defect density of C/ C++ projects
in 2013. There are several factors that impact the density level. First, the analysis algorithms for Java and C/C++ differ. The
analysis we provide for the Scan service includes the popular FindBugs checkers, which are very useful. Many of the FindBugs
checkers generate large quantities of results, in particular in the areas of dodgy code, performance and bad practices. Another
factor to consider when assessing the defect density of the Java programs is the length of time the Scan service has been
available to the projects. It is not uncommon to see higher defect density rates in the early stages of a project’s participation in
the service, followed by a reduction in the defect density over time.

TABLE 15: DEFECTS FIXED BY TYPE AND IMPACT IN JAVA 2013

Category Quantity Impact

Null pointer dereferences 546 Medium

FindBugs*: Dodgy code 423 Low

FindBugs: Performance 355 Low

FindBugs: Bad practice 282 Low

FindBugs: Internationalization 273 Low

Concurrent data access violations 211 Low

Resource leaks 143 High

Class hierarchy inconsistencies 123 Medium

FindBugs: Correctness 107 Medium

Control flow issues 61 Medium

FindBugs: Multithreaded correctness 49 Medium

COVERITY SCAN: 2013 OPEN SOURCE REPORT

18

Exceptional resource leaks 39 Low

Integer handling issues 25 Medium

API usage errors 13 Medium

Error handling issues 9 Medium

Incorrect expression 7 Medium

Program hangs 4 Medium

FindBugs: Malicious code vulnerability 3 Low

Performance inefficiencies 2 Low

Total 2,691

*Note: all category types preceded by FindBugs indicates that this is a FindBugs checker. All others are Coverity analysis algorithms.

TABLE 16: DEFECTS OUTSTANDING BY TYPE AND IMPACT IN JAVA AS OF DEC. 31, 2013

Category Quantity Impact

FindBugs: Dodgy code 5,715 Low

Null pointer dereferences 4,743 Medium

FindBugs: Performance 3,492 Low

FindBugs: Bad practice 2,762 Low

FindBugs: Internationalization 2,062 Low

Resource leaks 1,000 High

Concurrent data access violations 986 Low

FindBugs: Multithreaded correctness 555 Medium

FindBugs: Correctness 482 Medium

Exceptional resource leaks 324 Low

Class hierarchy inconsistencies 319 Medium

Control flow issues 295 Medium

Error handling issues 120 Medium

Integer handling issues 76 Medium

API usage errors 60 Medium

COVERITY SCAN: 2013 OPEN SOURCE REPORT

19

Incorrect expression 44 Medium

FindBugs: Malicious code vulnerability 44 Low

Program hangs 22 Medium

Performance inefficiencies 11 Low

FindBugs: Security 2 Medium

Total 23,113

Java Project Snapshots
Apache Cassandra, Apache CloudStack, Apache Hadoop and Apache HBase and are just a few of the more than 100 Java
projects that joined the Coverity Scan service in 2013. The following is a snapshot of the outstanding and fixed defects for
these key projects.

Apache Cassandra

Apache Cassandra (Cassandra) is an open source distributed database management system designed to handle large amounts
of data across many commodity servers, providing high availability with no single point of failure. It offers robust support for
clusters spanning multiple datacenters with asynchronous masterless replication, allowing low latency operations for all clients.
Cassandra joined the service in February of 2013 and the first analysis run was conducted in July of 2013. It has more than
345,000 lines of code and developers fixed 86 defects in 2013.

TABLE 17: APACHE CASSANDRA 2.0 DEFECTS FOUND AND FIXED BY TYPE AND IMPACT IN 2013

Category Outstanding Fixed Impact

Null pointer dereferences 53 14 Medium

Resource leaks 48 7 High

FindBugs: Bad practice 42 2 Low

FindBugs: Dodgy code 37 6 Low

FindBugs: Performance 27 2 Low

FindBugs: Internationalization 18 0 Low

FindBugs: Multithreaded correctness 6 2 Medium

Concurrent data access violations 5 2 Medium

API usage errors 5 0 Medium

COVERITY SCAN: 2013 OPEN SOURCE REPORT

20

Control flow issues 5 0 Medium

Performance inefficiencies 27 0 Low

Integer handling issues 2 1 Medium

Incorrect expression 1 0 Medium

FindBugs: Correctness 0 2 Medium

FindBugs: Malicious code vulnerability 1 0 Low

Grand Total 252 38 Defect Density: 1.95

Apache CloudStack

Apache CloudStack (Cloudstack) is designed to deploy and manage large networks of virtual machines, as a highly available,
highly scalable, Infrastructure-as-a-Service (IaaS) platform. It is used by a number of service providers to offer public cloud
services, and by many companies to provide an on-premise (private) cloud offering, or as part of a hybrid cloud solution.
CloudStack joined Coverity Scan in October of 2013.

TABLE 18: APACHE CLOUDSTACK DEFECTS FOUND BY TYPE AND IMPACT IN 2013

Category Outstanding Fixed Impact

FindBugs: Dodgy code 2,617 49 Low

Null pointer dereferences 1,831 37 Medium

FindBugs: Performance 1,744 34 Low

FindBugs: Bad practice 215 28 Low

FindBugs: Internationalization 136 8 Low

Resource leaks 126 13 High

Exceptional resource leaks 104 9 Low

FindBugs: Correctness 87 14 Medium

Concurrent data access violations 43 1 Medium

FindBugs: Multithreaded correctness 34 1 Medium

Control flow issues 25 4 Medium

COVERITY SCAN: 2013 OPEN SOURCE REPORT

21

Integer handling issues 10 2 Medium

Error handling issues 8 0 Medium

Class hierarchy inconsistencies 6 4 Medium

Incorrect expression 6 0 Medium

API usage errors 2 0 Medium

Grand Total 6,994 220 Defect Density: 6.96

Apache Hadoop

The Apache Hadoop (Hadoop) software library is a framework that allows for the distributed processing of large data sets
across clusters of computers using simple programming models. It is designed to scale up from single servers to thousands of
machines, each offering local computation and storage. Rather than rely on hardware to deliver high-availability, the library
itself is designed to detect and handle failures at the application layer. The project joined the Coverity Scan service in August of
2013. Hadoop has more than 320,000 lines of code in their core components. Since that time developers have found and fixed
the following defects in the code:

TABLE 19: APACHE HADOOP DEFECTS OUTSTANDING AND FIXED BY TYPE AND IMPACT IN 2013

Category Outstanding Fixed Impact

FindBugs: Dodgy code 128 3 Low

Null pointer dereferences 100 20 Medium

Concurrent data access violations 84 5 Medium

FindBugs: Internationalization 65 9 Low

FindBugs: Bad practice 33 2 Low

Resource leaks 30 1 High

FindBugs: Multithreaded correctness 6 2 Medium

Class hierarchy inconsistencies 3 1 Medium

FindBugs: Correctness 2 2 Medium

API usage errors 2 0 Medium

Incorrect expression 2 0 Medium

COVERITY SCAN: 2013 OPEN SOURCE REPORT

22

Integer handling issues 2 0 Medium

Performance inefficiencies 1 0 Low

Program hangs 1 1 Medium

Error handling issues 1 0 Medium

Grand Total 457 46 Defect Density: 1.71

Apache HBase

Apache HBase (HBase) is the Hadoop database. It is a distributed, scalable, big data store and a sub-project of the Apache
Hadoop project. It is used to provide real-time read and write access to big data. According to The Apache Software
Foundation, the primary objective of HBase is the hosting of very large tables (billions of rows X millions of columns) atop
clusters of commodity hardware. They joined the Coverity Scan service in late August of 2013. The project has 487,803 lines of
code and in the short time it has been using the Scan service, developers have fixed 220 defects including 66% of all resource
leaks.

TABLE 20: APACHE HBASE DEFECTS FOUND AND FIXED BY TYPE AND IMPACT IN 2013

Category Outstanding Fixed Impact

Category Outstanding Fixed Impact

Null pointer dereferences 98 44 Medium

Concurrent data access violations 82 18 Medium

FindBugs: Bad practice 55 25 Low

FindBugs: Internationalization 49 36 Low

FindBugs: Dodgy code 37 14 Low

FindBugs: Multithreaded correctness 30 6 Medium

Resource leaks 21 41 High

Control flow issues 8 6 Medium

Exceptional resource leaks 6 5 Low

Integer handling issues 6 1 Medium

API usage errors 5 2 Medium

Error handling issues 3 0 Medium

Class hierarchy inconsistencies 3 0 Medium

COVERITY SCAN: 2013 OPEN SOURCE REPORT

23

Incorrect expression 1 2 Medium

FindBugs: Malicious code vulnerability 4 0 Low

FindBugs: Performance 1 8 Low

FindBugs: Correctness 1 9 Medium

Program hangs 0 1 Medium

Performance inefficiencies 0 2 Low

Grand Total 410 220 Defect Density: 2.33

Conclusion and Next Steps
The year 2013 was an exciting one for the Coverity Scan service. We saw unprecedented levels of growth and adoption by open
source users. We are excited about adding the Project Observer role to the service, making it even easier for users to see the
high-quality of the participating open source projects. We have many additional enhancements planned for 2014, which we
look forward to communicating in the coming months. We would like to thank all of our Scan members and the open source
community at large for their interest and support of the Coverity Scan service. If you would like to register a new project,
contribute to or observe an existing project, visit us at https://scan.coverity.com/

About Coverity
Coverity, Inc., a Synopsys company (Nasdaq:SNPS), is a leading provider of software quality and security testing solutions.
Coverity’s award-winning development testing platform helps developers create and deliver better software, faster, by
automatically testing source code for software defects that could lead to product crashes, unexpected behavior, security breaches
or catastrophic system failure. The world’s largest brands rely on Coverity to help ensure the quality, safety and security of their
products and services. For more information, visit www.coverity.com, follow us on Twitter or check out our blog.

© 2014 Coverity, Inc. All rights reserved. Coverity and the Coverity logo are registered trademarks of Coverity, Inc. in the U.S. and other countries. All other company and product
names are the property of their respective owners.

http://www.twitter.com/coverity
http://blog.coverity.com/

